
Analysing Spatial Data in R: Vizualising Spatial
Data

Roger Bivand

Department of Economics
Norwegian School of Economics and Business Administration

Bergen, Norway

31 August 2007

Vizualising Spatial Data

I Displaying spatial data is one of the chief reasons for providing
ways of handling it in a statistical environment

I Of course, there will be differences between analytical and
presentation graphics here as well — the main point is to get
a usable display quickly, and move to presentation quality
cartography later

I In general, maintaining aspect is vital, and that can be done
in both base and lattice graphics in R (note that both sp and
maps display methods for spatial data with geographical
coordinates“stretch” the y-axis)

I We’ll look at the basic methods for displaying spatial data in
sp; other packages have their own methods, but the next unit
will show ways of moving data from them to sp classes

Just spatial objects

I There are base graphics plot methods for the key Spatial*

classes, including the Spatial class, which just sets up the
axes

I In base graphics, additional plots can be added by overplotting
as usual, and the locator() and identify() functions work
as expected

I In general, most par() options will also work, as will the full
range of graphics devices (although some copying operations
may disturb aspect)

I First we will display the positional data of the objects
discussed in the first unit

Plotting a SpatialPoints object

179000 180000 181000

33
00

00
33

10
00

33
20

00
33

30
00

While plotting the SpatialPoints
object would have called the plot
method for Spatial objects internally
to set up the axes, we start by doing
it separately:
> plot(as(meuse1, "Spatial"),

+ axes = TRUE)

> plot(meuse1, add = TRUE)

> plot(meuse1[meuse1$ffreq ==

+ 1,], col = "green", add = TRUE)

Then we plot the points with the
default plotting character, and
subset, overplotting points in flood
frequency class 1 in green, using the
[method

Plotting a SpatialPolygons object

178000 179000 180000 181000 182000

33
00

00
33

10
00

33
20

00
33

30
00

33
40

00

In plotting the SpatialPolygons
object, we use the ylim= argument
to restrict the display area to match
the soil sample points.
> plot(rivers, axes = TRUE, col = "azure1",

+ ylim = c(329400, 334000))

> box()

If the axes= argument is FALSE or
omitted, no axes are shown — the
default is the opposite from standard
base graphics plot methods

Plotting a SpatialPixels object

178000 179000 180000 181000 182000

33
00

00
33

10
00

33
20

00
33

30
00

33
40

00

Both SpatialPixels and SpatialGrid
objects are plotted like SpatialPoints
objects, with plotting characters
> plot(rivers, axes = TRUE, col = "azure1",

+ ylim = c(329400, 334000))

> box()

> plot(meuseg1, add = TRUE, col = "grey60",

+ cex = 0.15)

While points, lines, and polygons are
often plotted without attributes, this
is rarely the case for gridded objects

Including attributes

I To include attribute values means making choices about how
to represent their values graphically, known in some GIS as
symbology

I It involves choices of symbol shape, colour and size, and of
which objects to differentiate

I When the data are categorical, the choices are given, unless
there are so many different categories that reclassification is
needed for clear display

I Once we’ve looked at some examples, we’ll go on to see how
class intervals may be chosen for continuous data

Flood frequencies at soil sample sites

●
● ●

●

●
●

●●

●
●

●
●

●
●
●

●

●

●

●

● ●●
●

●

●
●●

●
●

●

●
●●

●
●●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●
●

●●
●

●

●

●

●●
●

●

●

●

●

annual
every 2−5 years
> 5 years

We will usually need to get the
category levels and match them to
colours (or plotting characters)“by
hand”
> meuse1$ffreq1 <- as.numeric(meuse1$ffreq)

> plot(meuse1, col = meuse1$ffreq1,

+ pch = 19)

> labs <- c("annual", "every 2-5 years",

+ "> 5 years")

> cols <- 1:nlevels(meuse1$ffreq)

> legend("topleft", legend = labs,

+ col = cols, pch = 19, bty = "n")

It is also typical that the legend()
involves more code than everything
else together, but very often the
same vectors are used repeatedly and
can be assigned just once

Coloured contour lines

Here again, the values are
represented as a categorical variable,
and so do not require classification
> volcano_sl$level1 <- as.numeric(volcano_sl$level)

> pal <- terrain.colors(nlevels(volcano_sl$level))

> plot(volcano_sl, bg = "grey70",

+ col = pal[volcano_sl$level1],

+ lwd = 3)

Using class membership for colour
palette look-up is a very typical
idiom, so that the col= argument is
in fact a vector of colour values

Displaying gridded data

annual
every 2−5 years
> 5 years Since we also have 40m grid flood

frequencies, we can try to display
them — here we use the image()
method, which first fills in the NAs,
the makes a matrix of the chosen
variable
> meuseg1$ffreq1 <- as.numeric(meuseg1$ffreq)

> image(meuseg1, "ffreq1", col = cols)

> legend("topleft", legend = labs,

+ fill = cols, bty = "n")

Some of the arguments here are like
those we’ll meet soon for lattice
graphics

Class intervals

I Class intervals can be chosen in many ways, and some have
been collected for convenience in the classInt package

I The first problem is to assign class boundaries to values in a
single dimension, for which many classification techniques may
be used, including pretty, quantile, natural breaks among
others, or even simple fixed values

I From there, the intervals can be used to generate colours from
a colour palette, using the very nice colorRampPalette()

function

I Because there are potentially many alternative class
memberships even for a given number of classes (by default
from nclass.Sturges), choosing a communicative set matters

Class intervals

We will try just two styles, quantiles and Fisher-Jenks natural
breaks for five classes, among the many available. They yield quite
different impressions, as we will see:
> library(classInt)

> library(RColorBrewer)

> pal <- brewer.pal(3, "Blues")

> q5 <- classIntervals(meuse1$zinc, n = 5, style = "quantile")

> q5

style: quantile

one of 14,891,626 possible partitions of this variable into 5 classes

under 186.8 186.8 - 246.4 246.4 - 439.6 439.6 - 737.2 over 737.2

31 31 31 31 31

> fj5 <- classIntervals(meuse1$zinc, n = 5, style = "fisher")

> fj5

style: fisher

one of 14,891,626 possible partitions of this variable into 5 classes

under 307.5 307.5 - 573.0 573.0 - 869.5 869.5 - 1286.5

75 32 29 12

over 1286.5

7

> plot(q5, pal = pal)

> plot(fj5, pal = pal)

Class interval plots

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Quantile

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●●

●●
●●
●●

●●
●●●

●●●
●●
●●
●●
●●
●●

●●
●●
●●
●
●●
●●
●●
●●
●●
●●
●●
● ●●

● ●●
●●

●●●
●● ● ● ●●

● ● ●

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fisher−Jenks natural breaks

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●
●●●

●●
●●
●●

●●
●●●

●●●
●●
●●
●●
●●
●●

●●
●●
●●
●
●●
●●
●●
●●
●●
●●
●●
● ●●

● ●●
●●

●●●
●● ● ● ●●

● ● ●

Two versions of zinc ppm

●
● ●

●

●
●

●●

●
●

●
●

●
●
●

●

●

●

●

● ●●
●

●
●
●●

●
●

●

●
●●

●
●●

●
●●

●

●

●●

●

●

●

●

●

●

●●

●
●●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●
●

●●
●

●

●
●

●●
●

●

Quantile

under 186.8
186.8 − 246.4
246.4 − 439.6
439.6 − 737.2
over 737.2

●
● ●

●

●
●

●●

●
●

●
●

●
●
●

●

●

●

●

● ●●
●

●
●
●●

●
●

●

●
●●

●
●●

●
●●

●

●

●●

●

●

●

●

●

●

●●

●
●●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●
●

●●
●

●

●
●

●●
●

●

Fisher−Jenks natural breaks

under 307.5
307.5 − 573.0
573.0 − 869.5
869.5 − 1286.5
over 1286.5

Lattice graphics

I Lattice graphics will only come into their own later on, when
we want to plot several variables with the same scale together
for comparison

I The workhorse method is spplot, which can be used as an
interface to the underlying xyplot or levelplot methods, or
others as suitable; overplotting must be done in the single call
to spplot — see gallery

I It is often worthwhile to load the lattice package so as to
have direct access to its facilities

I Please remember that lattice graphics are displayed on the
current graphics device by default only in interactive sessions
— in loops or functions, they must be explicitly print’ed

Bubble plots

zinc

●●● ●

●
●

●●
●

●
●

●

●
●
●

●
●

●
●

●●●●

●
●
●●

●
●

●

●
●●

●
●●

●
●●●
●

●●

●

●
●
●
●

●

●●

●●●●●
●

● ●
●

●
●
●

●
●

●
●

●

●
●
●●

●●
●●
●

●
●
●●

●

●

●

●

●

●
●

●

● ●●
●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

● ●

●

●
●

●●
●

●

●
●

●●
●

●

●

●

●

●
●

100
200
400
800
1600

Bubble plots are a convenient way of
representing the attribute values by
the size of a symbol
> library(lattice)

> bubble(meuse1, "zinc", maxsize = 2,

+ key.entries = 100 * 2^(0:4))

As with all lattice graphics objects,
the function can return an object
from which symbol sizes can be
recovered

Level plots

0.0

0.2

0.4

0.6

0.8

1.0

The use of lattice plotting methods
yields easy legend generation, which
is another attraction
> bpal <- colorRampPalette(pal)(41)

> spplot(meuseg1, "dist", col.regions = bpal,

+ cuts = 40)

Here we are showing the distances
from the river of grid points in the
study area; we can also pass in
intervals chosen previously

More realism

I So far we have just used canned data and spatial objects
rather than anything richer

I The vizualisation methods are also quite flexible — both the
base graphics and lattice graphics methods can be extensively
customised

I It is also worth recalling the range of methods available for sp
objects, in particular the overlay and spsample methods with
a range of argument signatures

I These can permit further flexibility in display, in addition to
their primary uses

	Introduction
	Just spatial objects
	Including attributes
	Class intervals

	Lattice graphics

