Mixing Econometrics and Epidemiology: the perfect job for Health Economics?

Gianluca Baio

Department of Epidemiology and Public Health — University College London (UK)

Collaborative Meeting on “Mixing Econometrics and Epidemiology in the context of estimating treatment effects”

Imperial College London
9 March, 2009
Outline of presentation

1. What is health economic evaluation?
2. Statistical decision process
3. Frameworks for health economics & data analysis
 - Licensing
 - Reimbursement
 - Post-marketing surveillance
4. Conclusions
Outline of presentation

1. What is health economic evaluation?
2. Statistical decision process
3. Frameworks for health economics & data analysis
 - Licensing
 - Reimbursement
 - Post-marketing surveillance
4. Conclusions
Outline of presentation

1. What is health economic evaluation?
2. Statistical decision process
3. **Frameworks for health economics & data analysis**
 - Licensing
 - Reimbursement
 - Post-marketing surveillance
4. Conclusions
Outline of presentation

1. What is health economic evaluation?
2. Statistical decision process
3. Frameworks for health economics & data analysis
 - Licensing
 - Reimbursement
 - Post-marketing surveillance
4. Conclusions
What is Health Economics?

- Cost analysis
- How much does it cost to treat a patient with intervention i?
- Financial analysis
- Budgeting
What is Health Economics?

<table>
<thead>
<tr>
<th>Cardiovascular system (C)</th>
<th>Expenditure(^1)</th>
<th>%(^*)</th>
<th>DDD(^2)</th>
<th>%(^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosentan</td>
<td>37.0</td>
<td>47.9</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Cardiac stimulants</td>
<td>8.8</td>
<td>11.4</td>
<td>3.5</td>
<td>2.1</td>
</tr>
<tr>
<td>Statins</td>
<td>5.5</td>
<td>7.2</td>
<td>15.9</td>
<td>9.9</td>
</tr>
<tr>
<td>Calcium Antagonists (diidro.)</td>
<td>4.5</td>
<td>5.8</td>
<td>20.1</td>
<td>12.4</td>
</tr>
<tr>
<td>Nitrates</td>
<td>3.7</td>
<td>4.8</td>
<td>21.0</td>
<td>13.0</td>
</tr>
<tr>
<td>Diuretics</td>
<td>2.2</td>
<td>2.8</td>
<td>18.8</td>
<td>11.6</td>
</tr>
<tr>
<td>Ace Inhibitors</td>
<td>2.1</td>
<td>2.8</td>
<td>24.0</td>
<td>14.8</td>
</tr>
<tr>
<td>Beta Blockers</td>
<td>1.7</td>
<td>2.2</td>
<td>17.2</td>
<td>10.7</td>
</tr>
<tr>
<td>Alfa Blockers</td>
<td>1.0</td>
<td>1.3</td>
<td>3.2</td>
<td>2.0</td>
</tr>
<tr>
<td>Angiotensin II Antagonists</td>
<td>0.9</td>
<td>1.1</td>
<td>3.5</td>
<td>2.2</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

\(^1\) Millions €
\(^2\) Millions days of therapy
\(^*\) Percentages are calculated over the total of the ATC category

Source: Osmed (2007)

Cost analysis

How much does it cost to treat a patient with intervention \(i\)?

- Financial analysis
- Budgeting

Perfect job for HE?

Collab. Meeting ICL, 9 March 2009
What is Health Economics?

Generalisation and integration of **statistics** (methodological & experimental), **epidemiology**, **econometrics** and **financial analysis**

- Epidemiology
- Decision theory
- Causal inference
- Experimental studies
- Cost analysis

- How much does it cost to treat a patient with intervention *i*?
 - Financial analysis
 - Budgeting

Perfect job for HE?

Collab. Meeting ICL, 9 March 2009
Health economic evaluations

- **Objective:** Combine costs & benefits of a given intervention into a rational scheme for allocating resources
 - Recently, models have been built upon more advanced statistical foundations
 - This problem can be formalised within a statistical decision-theoretic (DT) approach. Rational decision-making is effected through the comparison of expected utilities
Health economic evaluations

- **Objective**: Combine costs & benefits of a given intervention into a rational scheme for allocating resources
 - Recently, models have been built upon more advanced statistical foundations
 - This problem can be formalised within a statistical decision-theoretic (DT) approach. Rational decision-making is effected through the comparison of expected utilities

- Increasingly under a Bayesian framework, especially in the UK
 - Specific focus on Bayesian decision-theoretic development of cost-effectiveness analysis
 - Contributions by several scholars and research groups
 - Karl Claxton (University of York)
 - Tony O’Hagan (University of Sheffield — Centre for Bayesian Statistics in Health Economics)
General framework

- Consider a set of “units” (patients) that can be regarded as similar (exchangeable) before treatment
 - Randomised, stratified, . . .
- The interest is in the management of a particular condition for which a set of interventions \(t \in (0, 1, \ldots, T) \) is available
- Any of these interventions can be applied to any of the units, and a (possibly multivariate) response \(Y_i \) will be observed
General framework

- Consider a set of “units” (patients) that can be regarded as similar (exchangeable) before treatment
 - Randomised, stratified, ...

- The interest is in the management of a particular condition for which a set of interventions $t \in (0, 1, \ldots, T)$ is available

- Any of these interventions can be applied to any of the units, and a (possibly multivariate) response Y_i will be observed

- We need to decide what intervention to apply to the a new unit i', again judged as similar with all the others receiving the same treatment
 - Units might themselves be a population, and treatments might be some population-level policy interventions
Data generating process

This setting essentially amounts to assuming the following data generating process
Data generating process

This setting essentially amounts to assuming the following data generating process

1. Define a set of relevant *population parameters*, generally in terms of some treatment-specific components, *e.g.* \(\theta = (\theta^0, \ldots, \theta^t, \ldots, \theta^T) \)

 - The current *uncertainty* about \(\theta \) is formally described by a suitable probability distribution
 - This describes the state of science about the parameters before observing any new data. For instance, we will generally have patient-level data in the form \(D^t = \{y_i : i = 1, \ldots, n_t\} \) and the whole set of background information as \(D = \bigcup_t D^t \)
 - The joint distribution of all the parameters is then \(p(\theta \mid D) \), from which it is possible to obtain every single marginal distribution \(p(\theta^t \mid D) \)
Data generating process

This setting essentially amounts to assuming the following data generating process

1. Define a set of relevant *population parameters*, generally in terms of some treatment-specific components, e.g. \(\theta = (\theta^0, \ldots, \theta^t, \ldots, \theta^T) \)
 - The current *uncertainty* about \(\theta \) is formally described by a suitable probability distribution
 - This describes the state of science about the parameters before observing any new data. For instance, we will generally have patient-level data in the form \(D^t = \{y_i : i = 1, \ldots, n_t \} \) and the whole set of background information as \(D = \bigcup_t D^t \)
 - The joint distribution of all the parameters is then \(p(\theta \mid D) \), from which it is possible to obtain every single marginal distribution \(p(\theta^t \mid D) \)

2. Conditionally on \(\theta \), the \(Y_i \)'s are drawn independently from the probability distribution \(p(y \mid \theta) \), which describes the individual *variability* of the future (yet unobserved) health economic response
(Bayesian) Decision-making process

- Consider (for simplicity) two alternative treatments $t = 0, 1$ that can be applied.
- The health economic outcome is quantified as $y = (e, c)$
 - e suitable measure of effectiveness (i.e. QALYs)
 - c costs of all resource use
(Bayesian) Decision-making process

- Consider (for simplicity) two alternative treatments $t = 0, 1$ that can be applied
- The *health economic outcome* is quantified as $y = (e, c)$
 - e suitable measure of effectiveness (*i.e.* QALYs)
 - c costs of all resource use
- The objective is to compare the expected performance of the two interventions along those dimensions
 - *Increment in mean effectiveness*
 \[\Delta_e := E[e \mid \theta^1] - E[e \mid \theta^0] \]
 - *Increment in mean cost*
 \[\Delta_c := E[c \mid \theta^1] - E[c \mid \theta^0] \]
(Bayesian) Decision-making process

- Consider (for simplicity) two alternative treatments $t = 0, 1$ that can be applied
- The health economic outcome is quantified as $y = (e, c)$
 - e suitable measure of effectiveness (i.e. QALYs)
 - c costs of all resource use
- The objective is to compare the expected performance of the two interventions along those dimensions
 - *Increment in mean effectiveness*
 $$\Delta_e := E[e \mid \theta^1] - E[e \mid \theta^0]$$
 - *Increment in mean cost*
 $$\Delta_c := E[c \mid \theta^1] - E[c \mid \theta^0]$$
- NB: These two quantities are *random variables* upon variations in the parameters θ
(Bayesian) Decision making process

The simplest decision rule is based on the *Incremental Cost-Effectiveness Ratio*:

$$\text{ICER} = \frac{\Delta c}{\Delta e}$$
(Bayesian) Decision making process

The simplest decision rule is based on the *Incremental Cost-Effectiveness Ratio*:

\[
\text{ICER} = \frac{\Delta_c}{\Delta_e}
\]

Increment in costs (Δ_c)

Distribution of ICER

Increment in effectiveness (Δ_e)
(Bayesian) Decision making process

The simplest decision rule is based on the *Incremental Cost-Effectiveness Ratio*:

\[
\text{ICER} = \frac{\Delta_c}{\Delta_e}
\]

Increment in costs (Δ_c)

In this case, the new intervention produces an increase in effectiveness and a relatively small increase in costs.
Besides the philosophical aspects, there are a few pragmatic aspects that have perhaps driven the establishment of the Bayesian approach in HE, especially in the UK:

- Bayesian decision theory provides an **absolute ranking of options**
- Existing information, at least on some aspects of the intervention being tested, are often available in the form of previous data; consequently, prior distributions can be based on “hard evidence” and are less affected by subjective matters
- Bayesian framework particularly effective to handle **sensitivity analysis** (more of this later!)
Frameworks for HE evaluation

There are (at least) three different frameworks for health economic evaluations; in principle, they can be based on different data sources (and even on different methodologies to analyse the data!)
Frameworks for HE evaluation

There are (at least) three different frameworks for health economic evaluations; in principle, they can be based on different data sources (and even on different methodologies to analyse the data!)

- **Licensing of a new technology**
 - Almost always based on data from clinical trials of a new intervention
 - Causal effect of treatment easier to measure (classical conditions of randomisation) — but perhaps problems with compliance

- **Reimbursement & pricing activity**
 - Might require additional data, perhaps from observational studies in the post-marketing phase
 - It is generally more complex to measure the causal effect of treatment

- **Surveillance**
 - Epidemiologic focus; treatment has obtained license (and possibly reimbursement)
 - Data are observational and objective is to detect adverse reaction
Non compliance (Jin & Rubin vs Efron & Feldman)

EF (1991) addressed the problem of partial compliance in a RCT

JR (2008) re-analysed the same data and used Potential Response outcome to estimate causal effect of \(Trt \) on \(Resp \) weighing for the effect of \(Dose \)

\[Trt = \text{Active treatment vs Placebo (randomised)} \]
\[Resp = \text{Cholesterol reduction} \]
\[Dose = \text{Level of treatment received} \]

\[\text{Data observed in the trial} \]
Non compliance (Jin & Rubin vs Efron & Feldman)

EF (1991) addressed the problem of partial compliance in a RCT.

JR (2008) re-analysed the same data and used Potential Response outcome to estimate causal effect of Trt on $Resp$ weighing for the effect of $Dose$

$Trt =$ Active treatment vs Placebo (randomised)

$Resp =$ Cholesterol reduction

$Dose =$ Level of treatment received

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{(D, d)} & (1, 1) & (.68, .89) & (0, 1) & (0, 0) \\
\hline
\rho = -.2 & 49 (39, 59) & 24 (18, 30) & -10 (-40, 25) & 4 (-6, 14) \\
\rho = 0 & 50 (39, 59) & 24 (17, 30) & -13 (-42, 27) & 5 (-6, 16) \\
\rho = .2 & 50 (39, 59) & 23 (16, 29) & -11 (-47, 27) & 5 (-7, 18) \\
\rho = .4 & 50 (40, 59) & 23 (16, 29) & -6 (-43, 34) & 6 (-7, 20) \\
\rho = .6 & 51 (39, 62) & 22 (15, 30) & -10 (-43, 30) & 7 (-8, 23) \\
\rho = .8 & 52 (38, 63) & 22 (11, 33) & -8 (-62, 68) & 6 (-11, 28) \\
\rho = .9 & 51 (37, 66) & 22 (6, 36) & -1 (-74, 79) & 9 (-25, 41) \\
\hline
\end{array}
\]
Non compliance (Jin & Rubin vs Efron & Feldman)

EF (1991) addressed the problem of partial compliance in a RCT

JR (2008) re-analysed the same data and used Potential Response outcome to estimate causal effect of Trt on $Resp$ weighing for the effect of $Dose$

Inclusion of additional covariates (possible confounding factors) to estimate this causal effect with less untested assumptions

$Trt =$ Active treatment vs Placebo (randomised)

$Resp =$ Cholesterol reduction

$Dose =$ Level of treatment received

$Diet =$ Data about dietary habits (at least on a subset of patients)

$Exercise =$ Data about exercise habits (at least on a subset of patients)
Non compliance (Jin & Rubin vs Efron & Feldman)

EF (1991) addressed the problem of partial compliance in a RCT

JR (2008) re-analysed the same data and used Potential Response outcome to estimate causal effect of Trt on Resp weighing for the effect of Dose

Inclusion of additional covariates (possible confounding factors) to estimate this causal effect with less untested assumptions

Trt = Active treatment vs Placebo (randomised)
Resp = Cholesterol reduction
Dose = Level of treatment received

Diet = Data about dietary habits (at least on a subset of patients)
Exercise = Data about exercise habits (at least on a subset of patients)
Frameworks for HE evaluation

There are actually three different frameworks for health economic evaluations; in principle, they can be based on different data sources (and even on different methodologies to analyse the data!)

• Licensing of a new technology
 – Almost always based on data from clinical trials of a new intervention
 – Causal effect of treatment easier to measure (classical conditions of randomisation) — but perhaps problems with compliance

• Reimbursement & pricing activity
 – Might require additional data, perhaps from observational studies in the post-marketing phase
 – It is generally more complex to measure the causal effect of treatment

• Surveillance
 – Epidemiologic focus; treatment has obtained license (and possibly reimbursement)
 – Data are observational and objective is to detect adverse reaction

G. Baio (UCL)
Perfect job for HE?
Collab. Meeting ICL, 9 March 2009
A sequential decision problem

decisions
random events
sampling costs

do not gather additional data

temporarily keep $t = 0$ & gather additional data

switch to $t = 1$

keep $t = 0$

\mathcal{D}

\mathcal{E}

$\{y\}$

$\{z\}$

$u(y)$

$u(z)$
1. Evidence integration in HE models

Spiegelhalter & Best (2003) discuss the inclusion of multiple evidence in the HE model

<table>
<thead>
<tr>
<th>Source</th>
<th>Charnley $(t = 0)$</th>
<th>Stanmore $(t = 1)$</th>
<th>Estimated Hazard Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>Revision rate</td>
<td>Number of patients</td>
<td>Revision rate</td>
</tr>
<tr>
<td>Registry</td>
<td>28,525</td>
<td>5.9%</td>
<td>865</td>
</tr>
<tr>
<td>RCT</td>
<td>200</td>
<td>3.5%</td>
<td>213</td>
</tr>
<tr>
<td>Case series</td>
<td>208</td>
<td>16.0%</td>
<td>982</td>
</tr>
</tbody>
</table>

Fixed effects model

- Registry: 0.55 (0.37–0.77)
- RCT: 1.34 (0.45–3.46)
- Case series: 0.44 (0.28–0.62)

Common effect model

- Quality weights [Registry, RCT, Case series]: 0.52 (0.39–0.67)

Random effects model

- [1,1,1]: 0.54 (0.37–0.78)
- [0.5,1,0.2]: 0.61 (0.36–0.98)
- [0.1,1,0.05]: 0.82 (0.36–1.67)
Integrated two-stage process (Spiegelhalter & Best 2003)

- Unknown parameters
 - Available evidence
 - Cost effectiveness model
 - Prediction of effects of interventions
Integrated two-stage process (Spiegelhalter & Best 2003)
When evidence is observational, it is necessary to build an overall economic model capable of dealing with potential biases introduced by confounding variables.

Integrated two-stage process (Spiegelhalter & Best 2003)
2. Sensitivity Analysis (SA)

Described in the Risk Assessment literature as the study of

“how uncertainty in some model output \((y)\) can be apportioned, qualitatively or quantitatively, to different sources of uncertainty in the model input \((\theta)\)”

There are many different sources of variation in the random quantities relevant for this problem that can be subject to SA

- Differences in the individual outcomes (variability)
- Differences in the expected outcomes that can be explained by identifiable individual characteristics (heterogeneity)
- Imperfect knowledge of model parameters (parameters uncertainty)

Usually, the most important is parameters uncertainty – Probabilistic Sensitivity Analysis
PSA

Parameters
- Clinical effect
- Disease progression
- QALYs
- Costs

Model structure
- Treatment $t = 0$
 - In health → Disease → Death
- Treatment $t = 1$
 - In health → Disease → Death

Decision analysis
<table>
<thead>
<tr>
<th>Treatment $t = 0$</th>
<th>Treatment $t = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>QALYs</td>
<td>Costs</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PSA

Parameters
- Clinical effect
- Disease progression
- QALYs
- Costs

Model structure

Decision analysis

<table>
<thead>
<tr>
<th>Treatment $t = 0$</th>
<th>QALYs</th>
<th>Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>In health</td>
<td>Disease</td>
<td>Death</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>£10,000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment $t = 1$</th>
<th>QALYs</th>
<th>Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>In health</td>
<td>Disease</td>
<td>Death</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>£30,000</td>
<td></td>
</tr>
</tbody>
</table>
PSA

Parameters

Clinical effect

Disease progression

QALYs

Costs

Model structure

Decision analysis

Treatment $t = 0$

<table>
<thead>
<tr>
<th>QALYs</th>
<th>Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>£10,000</td>
</tr>
<tr>
<td>0</td>
<td>£5,000</td>
</tr>
</tbody>
</table>

Treatment $t = 1$

<table>
<thead>
<tr>
<th>QALYs</th>
<th>Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>£30,000</td>
</tr>
<tr>
<td>3</td>
<td>£20,000</td>
</tr>
</tbody>
</table>

G. Baio (UCL)
PSA

Parameters

Clinical effect

Disease progression

QALYs

Costs

Model structure

Decision analysis

Treatment $t = 0$

<table>
<thead>
<tr>
<th>QALYs</th>
<th>Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>£10,000</td>
</tr>
<tr>
<td>0</td>
<td>£5,000</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>£15,000</td>
</tr>
</tbody>
</table>

Treatment $t = 1$

<table>
<thead>
<tr>
<th>QALYs</th>
<th>Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>£30,000</td>
</tr>
<tr>
<td>3</td>
<td>£20,000</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>£40,000</td>
</tr>
</tbody>
</table>

$E[ICER] = \frac{£20,000}{1QALY}$
More on PSA

![Graph showing Increment in costs (Δ_c) vs. Increment in effectiveness (Δ_e) for distribution of ICER.]

“Willingness to pay” threshold (£ per QALY)
More on PSA — Expected value of information

- Increasingly important as a summary of PSA in Health Economics
- Describes the maximum amount the decision maker should be willing to pay to resolve the uncertainty in the parameters
- By construction, combines
 a) how much we are likely to lose if we take the “wrong” decision
 b) how likely it is that we take it
More on PSA — Expected value of information

- Increasingly important as a summary of PSA in Health Economics
- Describes the maximum amount the decision maker should be willing to pay to resolve the uncertainty in the parameters
- By construction, combines
 a) *how much* we are likely to lose if we take the “wrong” decision
 b) *how likely* it is that we take it
- Drives the process of gathering additional evidence
- **NB**: Under the PR framework, the value of information about some parameters is meaningless (as no empirical evidence can ever be produced!)
Frameworks for HE evaluation

There are actually three different frameworks for health economic evaluations; in principle, they can be based on different data sources (and even on different methodologies to analyse the data!)

- Licensing of a new technology
 - Almost always based on data from clinical trials of a new intervention
 - Causal effect of treatment easier to measure (classical conditions of randomisation) — but perhaps problems with compliance

- Reimbursement & pricing activity
 - Might require additional data, perhaps from observational studies in the post-marketing phase
 - It is generally more complex to measure the causal effect of treatment

- Surveillance
 - Epidemiologic focus; treatment has obtained license (and possibly reimbursement)
 - Data are observational and objective is to detect adverse reaction
Post marketing research

- Typically clinical studies are conducted for a limited period of time
 - Pharmaceutical companies want to reach final decision on a new compound asap: the overall process takes about 8 years from Phase 1 to Market, and cost is estimated in $802 million (about other 7 years are necessary to get to Phase 1)
 - Once the main outcomes are confirmed in clinical trials, it is generally unethical not to make an effective treatment available for all patients
- Therefore, there is always the possibility of some rare side effects not being detected by clinical experimentation
Post marketing research

- Typically clinical studies are conducted for a limited period of time
 - Pharmaceutical companies want to reach final decision on a new compound asap: the overall process takes about 8 years from Phase 1 to Market, and cost is estimated in $802 million (about other 7 years are necessary to get to Phase 1)
 - Once the main outcomes are confirmed in clinical trials, it is generally unethical not to make an effective treatment available for all patients
- Therefore, there is always the possibility of some rare side effects not being detected by clinical experimentation
- Surveillance conducted on several levels
 - Patient Spontaneous Reports ("yellowcards")
 - Central institutions (FDA, EMeA, European Commission)
Impact of post-marketing findings on health economic evaluation

- Adverse reactions to drugs, identified in post-marketing may affect the health economic evaluation in many ways:
 - Treatment continuation or persistence (switching treatment, dosing reduction, discontinuation)
 - Quality of life
 - Use of additional resources (hospitalisation, vaccinations, extra treatments)
Impact of post-marketing findings on health economic evaluation

- Adverse reactions to drugs, identified in post-marketing may affect the health economic evaluation in many ways:
 - Treatment continuation or persistence (switching treatment, dosing reduction, discontinuation)
 - Quality of life
 - Use of additional resources (hospitalisation, vaccinations, extra treatments)

- Therefore, any cost-effective treatment (on the basis of current evidence) might turn out into a non-optimal alternative, once these new findings are accounted for

- Some guidelines (eg the Canadian) suggest stratified analysis to account for potential biases in observational data used for pharmaco-vigilance
The curious case of rofecoxib

- Rofecoxib is a NSAID, approved safe and effective by FDA in May 1999
- It was widely used world-wide in patients with arthritis and other conditions causing pain
The curious case of rofecoxib

- Rofecoxib is a NSAID, approved safe and effective by FDA in May 1999
- It was widely used world-wide in patients with arthritis and other conditions causing pain
- In 2002, the VIGOR study showed a 4-fold increase in CV risk, mostly accounted for by patients at higher risks of heart attack
- This led in April 2002 to the introduction of warnings on the rofecoxib-based drug labelling concerning the increased risk of CV events
The curious case of rofecoxib

- Rofecoxib is a NSAID, approved safe and effective by FDA in May 1999
- It was widely used world-wide in patients with arthritis and other conditions causing pain

- In 2002, the VIGOR study showed a 4-fold increase in CV risk, mostly accounted for by patients at higher risks of heart attack
- This led in April 2002 to the introduction of warnings on the rofecoxib-based drug labelling concerning the increased risk of CV events

- A few economic studies were performed to assess the cost-effectiveness of rofecoxib
- The results were in general positive
 - “The analysis showed that, with the introduction of rofecoxib, a substantial reduction in the risk of GI complications for patients on conventional NSAIDs therapy is possible at only a modest additional cost to the NHS budget” (Moore et al 2001)
 - “Rofecoxib is economically attractive in high risk and elderly patients” (Maetzel et al 2003)
The curious case of rofecoxib

- Rofecoxib is a NSAID, approved safe and effective by FDA in May 1999
- It was widely used world-wide in patients with arthritis and other conditions causing pain
- In 2002, the VIGOR study showed a 4-fold increase in CV risk, mostly accounted for by patients at higher risks of heart attack
- This led in April 2002 to the introduction of warnings on the rofecoxib-based drug labelling concerning the increased risk of CV events
- A few economic studies were performed to assess the cost-effectiveness of rofecoxib
- The results were in general positive
 - “The analysis showed that, with the introduction of rofecoxib, a substantial reduction in the risk of GI complications for patients on conventional NSAIDs therapy is possible at only a modest additional cost to the NHS budget” (Moore et al 2001)
 - “Rofecoxib is economically attractive in high risk and elderly patients” (Maetzel et al 2003)
- Sadly, some of the data used to produce effectiveness results were “controversial”, and in fact rofecoxib was more harmful than previously reported, leading the marketer to withdraw it completely
Other relevant problems

- **Technical issues**
 - Adjusting for differences in baseline patient characteristics
 - Controlling for centre- or country-effects in multicentre trials (e.g., hierarchical models)
 - Extrapolating beyond the end of clinical trials
 - Dealing with missing or censored data
 - Meta-analysing cost and effectiveness data
Other relevant problems

- **Technical issues**
 - Adjusting for differences in baseline patient characteristics
 - Controlling for centre- or country-effects in multicentre trials (e.g., hierarchical models)
 - Extrapolating beyond the end of clinical trials
 - Dealing with missing or censored data
 - Meta-analysing cost and effectiveness data

- **“Dissemination” & practical use of HE methods**
 - Tension within institutions such as NICE between the level of sophistication of the analyses, and the ability of the members of the Committees to understand them
 - Evidence needs to be conveyed in a clear way to the decision-makers so that they can understand use it
Conclusions

- (Despite its name), “Health Economics” is in fact a discipline that integrates many areas of research
 - Of course the clinical and the financial aspects are crucial, but to get there, we need more than doctors and economists
Conclusions

- (Despite its name), “Health Economics” is in fact a discipline that integrates many areas of research
 - Of course the clinical and the financial aspects are crucial, but to get there, we need more than doctors and economists
- Addressing the issue of (the impact of) uncertainty on the decision process is fundamental
 - Gathering and integrating continuous information
Conclusions

• (Despite its name), “Health Economics” is in fact a discipline that integrates many areas of research
 – Of course the clinical and the financial aspects are crucial, but to get there, we need more than doctors and economists
• Addressing the issue of (the impact of) uncertainty on the decision process is fundamental
 – Gathering and integrating continuous information
• Different forms of data are often needed to try and reduce this uncertainty
 – Integrating efficacy values from RCTs with “real” costs and effectiveness from observational studies
Thank You!